Self-assembled peptide amphiphiles function as multivalent binder with increased hemagglutinin affinity

نویسندگان

  • Christine Hüttl
  • Cornelia Hettrich
  • Reinhard Miller
  • Bernd-Reiner Paulke
  • Petra Henklein
  • Harshadrai Rawel
  • Frank F Bier
چکیده

BACKGROUND A promising way in diagnostic and therapeutic applications is the development of peptide amphiphiles (PAs). Peptides with a palmitic acid alkylchain were designed and characterized to study the effect of the structure modifications on self-assembling capabilities and the multiple binding capacity to hemagglutinin (HA), the surface protein of influenza virus type A. The peptide amphiphiles consists of a hydrophilic headgroup with a biological functionality of the peptide sequence and a chemically conjugated hydrophobic tail. In solution they self-assemble easily to micelles with a hydrophobic core surrounded by a closely packed peptide-shell. RESULTS In this study the effect of a multiple peptide binding partner to the receptor binding site of HA could be determined with surface plasmon resonance measurements. The applied modification of the peptides causes signal amplification in relationship to the unmodified peptide wherein the high constant specificity persists. The molecular assembly of the peptides was characterized by the determination of critical micelle concentration (CMC) with concentration of 10⁻⁵ M and the colloidal size distribution. CONCLUSION The modification of the physico-chemical parameters by producing peptide amphiphiles form monomeric structures which enhances the binding affinity and allows a better examination of the interaction with the virus surface protein hemagglutinin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioinspired self-assembled peptide nanofibers with thermostable multivalent α-helices.

The stabilization of peptide's active conformation is a critical determinant of its target binding efficiency. Here we present a structure-based self-assembly strategy for the design of nanostructures with multiple and thermostable α-helices using bioinspired peptide amphiphiles. The design principle was inspired by the oligomerization of the human immunodeficiency virus type-1 (HIV-1) Rev prot...

متن کامل

Self-assembly of model DNA-binding peptide amphiphiles.

Peptide amphiphiles combine the specific functionality of proteins with the engineering convenience of synthetic amphiphiles. These molecules covalently link a peptide headgroup, typically from an active fragment of a larger protein, to a hydrophobic alkyl tail. Our research is aimed at forming and characterizing covalently stabilized, self-assembled, peptide-amphiphile aggregates that can be u...

متن کامل

Self-assembly and applications of biomimetic and bioactive peptide- amphiphiles

Peptide-amphiphiles are amphiphilic structures with a hydrophilic peptide headgroup that incorporates a bioactive sequence and has the potential to form distinct structures, and a hydrophobic tail that serves to align the headgroup, drive self-assembly, and induce secondary and tertiary conformations. In this paper we review the different self-assembled structures of peptide-amphiphiles that ra...

متن کامل

Double-degradable responsive self-assembled multivalent arrays--temporary nanoscale recognition between dendrons and DNA.

This article reports self-assembling dendrons which bind DNA in a multivalent manner. The molecular design directly impacts on self-assembly which subsequently controls the way these multivalent nanostructures bind DNA--this can be simulated by multiscale modelling. Incorporation of an S-S linkage between the multivalent hydrophilic dendron and the hydrophobic units responsible for self-assembl...

متن کامل

Reversible Self-Assembled Monolayers (rSAMs): Adaptable Surfaces for Enhanced Multivalent Interactions and Ultrasensitive Virus Detection

We report on the design of pH-switchable monolayers allowing a reversible and ordered introduction of affinity reagents on sensor surfaces. The principal layer building blocks consist of α-(4-amidinophenoxy)alkanes decorated at the ω-position with affinity ligands. These spontaneously self-assemble on top of carboxylic acid terminated SAMs to form reversible homo or mixed monolayers (rSAMs) tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013